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Abstract 

The present paper is a naive operational approach to measurement theory in a truly 
relativistic framework. Both experiments and states exist in finite regions of space-time. 
The causality structure of the underlying Minkowski space is described in terms of these. 

1. Introduction 

The last few years have witnessed a renewed interest in the quantum 
theory of measurement. This revival has centered around the justification 
or critique of the 'orthodox' theory of von Neumann (1955). Numerous 
papers, even books, have been devoted to the subject, from points of view 
ranging from the most down-to-earth to the most philosophical.w We 
have no intention to join this raging controversy, rooted as it is in the 
deepest epistemological problems of physics. 

However, it is remarkable that nearly all the papers in measurement 
theory are in essence non-relativistic. A measurement is usually defined 
as an instantaneous act, or, if time duration is allowed, the process is 
considered on an absolute time scale (e.g. the widespread use of repreated 
experiments). As far as we know, only two papers--one by Schlieder 
(1968) and one by Hellwig & Kraus (1970)--depart from that position. 
They try to build a genuine relativistic theory of measurement using, 
however, the conventional language of density matrices. 

t A  Mellon Postdoctoral Fellow partially supported by the U.S. Atomic Energy 
Commission under contract number AT-30-1-3829. Current address is Institut de Phys- 
ique Throrique, Universit6 de Louvain, Celestijnenlaan 200 D-3030-Heverlee, Belgium. 

:~An N.S.F. Postdoctoral Fellow supported by N.S.F. development grant GU 2056. 
Current address is Department of Mathematics, University of Massachusetts, Amherst, 
Massachusetts. 

w See for instance, Daneri et aI. (1962), d'Espagnat (1965), Jauch et al. (1967), 
Jasselette (1970) and Jasselette et al. (1970). 
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On the other hand, another approach has been recently proposed which 
is operational in character. The idea is to characterize actual experiments, 
to see what experiments really do, and then to abstract from this a con- 
sistent mathematical scheme. Typically these authors, such as Mielnik 
(1968, 1969), Davies & Lewis (1970) or Davies (1970), approach the problem 
totally open-minded, not prejudiced in favor of a given structure such as 
Hilbert space or lattice theory ('quantum logic'). 

The present paper is an attempt to give a naive, operational approach 
to measurement theory in a truly relativistic (i.e. space-time) framework. 
There are two basic ideas. First, an actual experiment, i.e. not a 'gedanken' 
experiment but one realizable in a laboratory, always takes place in a 
finite region of space. The equipment is turned on for a finite duration of 
time. Thus, actual experiments take place in finite regions of space-time. 
This is consistent with the fact that all realistic forces (strong, weak, 
effective electromagnetic) except gravitation (which is the subject of general 
relativity) have a finite range. 

Secondly, the objects which are subjected to a measurement, or more 
generally, to an interaction, are by their very definition free outside that 
region of interaction. This of course does not mean that there are no 
correlations among these free objects. If a particle decays into two particles, 
after these two leave the interaction region they move freely despite their 
obvious correlations due to conservation laws. In the language of scattering 
theory, we say that 'asymptopia' begins right outside the finite range of 
the interaction. 

Further, the objects of our theory have, at any time during their free 
evolution, a finite extent in space. In a space-time diagram, they look like 
a 'beam', propagating at a speed not exceeding the speed of light. Here, 
obviously, we are in conflict with the usual assumptions of local quantum 
field theory (Haag & Kastler, 1964) where observables are usually localized 
but states are not. Here, we take both observables (experiments) and states 
to be localized in space. 

Now, an experiment may be described as follows: free 'beams' of 
'particles' enter an interaction region R and other 'beams' emerge from 
R. If there are pieces of equipment located in R, they might possibly 
register a finite number of numerical results. Thus, in order to describe 
such a process, what is needed is a definition of a 'beam', an 'interaction 
region' and an 'experiment'. This is done in Section 2. 

In Section 3 we list a few axioms which are essentially of the common- 
sense type. Section 4 is devoted to the causality structure of the theory. 
We establish a one-to-one correspondence between the mutual geometric 
positions of two interaction regions and a relation between all experiments 
that can be performed in the two regions in question. This is achieved 
via the concept of transparency. A collection of experiments E is, roughly 
speaking, transparent to another collection E' if no experiment of E' 
can influence an experiment of E. We then establish a link between the 
transparency relation and the natural partial order of space-time. 
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Finally, Section 5 deals with the Poincar6 invariance of the theory. 
The main result is an analogue of Zeeman's theorem (Zeeman, 1964). 
It says, essentially, that any one-to-one transformation of  Minkowski 
space that preserves all transparency relations is a conformal Poincar6 
transformation (Poincar6 transformation with a dilation). We thus end 
with a purely experimental statement which is independent of any particular 
dynamical theory (classical or quantum mechanical, linear or non-linear). 
Indeed, the formalism is completely general and must be viewed as a set 
of consistency relations between a physical theory of measurement on the 
one hand and the geometry of Minkowski space and the principle of Ein- 
stein causality on the other. 

The number of symbols and definitions in this paper is quite large. 
To aid the reader, we have included a list of symbols after the main text. 
In these, we include certain standard symbols which might be unfamiliar to 
the reader. Also after the main text, we have listed all the axioms in one 
place for easy reference. 

2. General Definitions 

We shall work consistently in Minkowski space, which will be denoted 
by ~ ' .  

2.1. Interaction Regions 
A three-dimensional submanifold S of ~ is called a space-like surface 

if the distance between any two points in S is space-like. We denote by 
5 ~ the collection of all spaee-like surfaces. A straight worMline is a geodesic'~ 
in ~ '  whose tangent is at each point either time-like or light-like. Using 
these notions, we call a collection T of straight world lines a worm tube 
(or simply a tube) if 

(1) Tis  the closure of its interior. 
(2) For  each S e 5 p, S f) T is convex and compact. 

It follows easily that any tube is arc-wise connected. We shall denote by 
J -  the collection of all tubes. 

We have said before that 'particles' are free outside interaction regions. 
Hence, their trajectories are geodesics. Note that the 'particles' may be 
at rest, such as a crystal or a target in a scattering experiment. 

We call an element (T, SI,S2) of J "  x 5 ~ x 5g admissible iff 

T A S I  < T f )  S2 

where the sign '<' refers to the time ordering in ~ ' .  We associate to each 
admissible set (T, $1, Sz) an interaction region R by 

R = {x ~..lg[x e T, T N Sx < x < T A $2} 

t A curve in a manifold whose tangent vector field is parallel along itself; in./g, straight 
line and geodesic are the same. 
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Here, again, < refers to the time ordering in ~ ' .  We shall write ~ for the 
collection of all interaction regions. We will write R = (T, SI,S2) if R is 
the interaction region associated with the admissible set (T, Sa,S2). R is 
just the section of the tube T bounded in time by the two surfaces $1 and 
S 2. We let 

Beg(R) = T fl S~ 

and 
End(R) = T fl $2 

which denote the beginning and the end of R, respectively. We note that 
each interaction region R has interior, is compact, and is the closure of 
its interioE 

2.2. States 
We now come to the description of the states. First, let us call c~ some 

undetermined set of quantum numbers (usually discrete) which completely 
describes the composition of the free physical states. ~ might include 
masses, spins, and charges, among others. 

Let B1 be a subset of all quadruples of the form 

b = ( T , C , A , S )  

with T ~ J - ,  C ~ ~ ,  A ~ [0, oo), and S ~ 5 r where we identify all quadruples 
with A = 0. The corresponding element is called the vacuum and is denoted 
by Q. It is obviously unique. An element b ~ B1 can be called a single 
beam; it propagates in the tube T with composition C and intensity ~. 
We purposely leave C and ~ unspecified. The precise nature of A does not 
play any role except for defining 12. A dynamical theory will provide the 
criteria to decide whether or not a quadruple is in BI. We do assume that 
if for some A > 0, (T, C,)~, S) is in Bl then so is (T, C,/z, S) for each/z ~ [0, oz) 
(see Section 3). 

Furthermore, we say that the single beam b propagating in the tube T 
was created on the space-like surface S. This could describe, for instance, 
the solution of a hyperbolic partial differential equation corresponding to 
Cauchy data of compact support on S and propagating into T, according 
to Huyghens's principle. For a given element b ~ B1, we will write Tb, 
Cb, A0, S0 for the elements of J ' ,  c~, [0, oo), 5a, respectively, for which 
b = (To, Co,)lo, So). We assume that (T, C,O,S)~ BI for each T~ 3", C ~ cd, 
and S ~ 5 a. Thus Aga = 0 while T•, C~ and S~ are arbitrary elements of 
their respective sets. 

We now come to the relationship between interaction regions and 
elements of B~. We say that an element b ~ B~ enters R = (T,S~,S2) ~ ~ iff 

(1) Tb f3 Sl - Beg(R). 
(2) Tb n s~ < T~ n s1. 

Condition (1) means that the trajectory describing b enters the region 
R while condition (2) means that b was created before reaching R. 
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We say that an element b ~ B 1 leaves R = (T, Sx,S2) ~ iff 

Sb fq T~ _ End(R) 

This means that the state b was created on the back surface of R. I t  follows 
quite easily that if  b leaves R then Sb fq Tb = Sz fq lb. 

A collection {bl . . . . .  b,} of  elements of  B, is said to meet in R, R ~ ~ ,  
iff 

(1) b ~ # b j ( i , j =  1, . . . ,n) .  
(2) b ~ # ~ ( i =  1, . . . ,n) .  
(3) Either all b~, i = 1,.. . ,n, enter R or all b~, i =  1 . . . .  ,n, leave R. 

We are now in a position to define a beam which is supposed to represent 
a truly realizable state of  the physical universe. A beam is a collection 
(hi,...,bn) of elements of  B1 such that there is an R ~ ~ satisfying 

(1) (bl , . . . ,b ,)  meet in R. 
(2) For  all R '  ~ ~ disjoint f rom R, b, and b 3 do not meet in R'  for 

any i , j =  1 . . . .  ,n. 

The second condition means that the single beams comprising a beam 
interact once, and once only. We denote the collection of  all beams plus 
the vacuum g2 as B. 

This is not quite enough to describe actual experiments, for several 
beams (in the above sense) may coexist during a certain period of time. 
We therefore introduce 

and 

We note that 

B k = B x .  �9 �9 x B, k factors for k ~> 1 

B(n) = ~J B k 
k=l 

B = B 1 = B (1) 

As an example, b ~ B (1) is either a beam or a pair of  beams. 
We distinguish certain subsets of  B as follows. The ingoing beams for 

a region R ~ ~ are 

B~" = {b ~B[ I f b  = (bl , . . . ,b , ) ,  then bl . . . .  ,b ,  all enter R} 

Similarly, the outgoing beams for R are 

B ]  ut = {b ~ B 1 I f  b = (bl , . . . ,  b,), then bl . . . . .  b, all leave R} 

We note that in 
~2 ~ B~ ut 

for each interaction region R. 
Further, B i  n (and B~ ut) have a natural cone structure. 
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We define the operations as follows: 

(1) For  b = (T, C, A, S) ~ Bl N B i  n, we let 

I~b=(T,C,l~)t,S) for /~>0  

(2) For  b = (bl,. �9 b,) ~ B i  n, we let 

Izb = (tzbl . . . . .  ~bn) for ~ > 0 

(3) For  b ~ B i  n, we let 

b +  s  

(4) For  b ~ B i  n (3 Bl -- s and c = (e l , . . . ,  c,) ~ B i  n - s we let 

(=(b,  c l , . . . , c , )  if b # c i ,  i=  1 , . . . , n  
b + e ~- (Cl . . . .  ,2el . . . . .  c,) if b = ci 

(5) For  b = (bl . . . .  , bn) ~ B i  n - s and c E B i  n, we let 

b + c = b l  +(b2 + ( " "  (b, + c )  " ") 

It  is obvious that B i  n is a cone with neutral element s We note that we 
may form the real vector spaces 

in in in 
V ~ at  = BORUt _ B ~  ut 

but we feel that the new elements have no physical interpretation. 
Given an element b ~ Bl, we can choose space-like surfaces S' and S" 

such that 
S' lq Tb < S~, n Tb < S" n Tb 

Then obviously b enters R" = (Tb, Sb, S") and leaves R' = (Tb, S', Sb). Thus 

b ~ B~. n B~U, t 

and so 
B l -  [.3 B i  n and B I -  U B~ ut 

R ~  R ~  

Also, as long as a beam enters a region R ~ ~ ,  its properties in the 
region R do not depend on the epoch when it was created. We introduce, 
therefore, an equivalence relation ~ on Bl defined by: 

For  any pair b, c E B1, we say b ~ c iff 

Tb = To, Cb = Cc and ~b = )t~ 

This relation is then extended to B in an obvious manner. 

2.3. Interactions 
So far we have described interaction regions and beams which may 

enter or leave them. It remains to describe the concept of  an experiment. 
The most general experiment consists of  several pieces of  equipment, 
located in a finite region of  space-time, which transform an in-state into 
an out-state. Within the confines of  the equipment, the original in-beam 
may be split into several disjoint beams (as in a scattering experiment, for 
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example). I f  so, several counters may be placed within the apparatus in 
order to analyze these beams separately. Thus, the output of the experiment 
may also contain a finite number of numerical data (non-negative numbers). 
For a non-negative integer n, we therefore define an n-channel experiment 
located in the region R, denoted by eR n, to be a map B - +  B C2) x (~+)n 
with the following properties [we will use the following notation: if 
eR"(b) = (b', fi), then b' = rq eRn(b) and fl = ~'2 eRn(b)]. 

(1) If  b ~ B i  n, then 

egn(b) = (b',/3) b' ~ B~ nt, fi ~ (R+) n 

(2) In particular, eg~(~) = (b', (0 . . . . .  0)). 
(3) Suppose b = (bl, �9 �9 bN) r B in. 

(a) I f  b, q~ B i  n, i= 1, . . . ,N,  then 

eR"(b) = (b, (0, . . . ,  0)) 
(b) I f  bq, . . . ,  bik ~ B i  n and b~k+ 1 . . . .  , b, N ~ B i  n, then 

= ( . . . .  , b , ) ,  (b,,+,,..., b,N), 
. . . .  , b , )  ) 

which is an element of B 2 • (R+) ". 

(4) For b ~ B i  n, eR"(b) depends only on the equivalence class of 
b mod g .  

We denote by AR" the collection of all n-channel experiments located in 
R. We define 

AR = ~) AR" 
n=0 

as the collection of all experiments located in R and finally 

A = U  Ag 

as the collection of all experiments. 
Several remarks are now in order. First, the symbols e, f , . . .  always 

refer to a speeifie piece of equipment located in a region R. The word 
'equipment' should be understood in a very wide sense. For instance, it 
may consist of only a magnetic field in R. It may even be empty, i.e. no 
equipment at all. Such a situation might describe the spontaneous decay 
of an unstable particle or the scattering between two particles. 

We should like to remark that the numbers produced by the experiment 
eR" are just that: numbers. A counter registered a number n or a spark 
chamber took pictures with n tracks. It is up to a dynamical theory, for 
example, to convert these numbers into dynamical variables such as energy 
and momentum or to infer from these numbers the existence or non- 
existence of particles with certain masses and spins. In fact, the entire 
superstructure of elementary and/or composite particles is just one inter- 
pretation of the numbers produced by the experiments. 

14 
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When b ~ B~R n we see that eR" yields an element b' ~ B~  ut. This element 
may be the vacuum, since ~ ~ B~ ut. Thus eR ~ may 'destroy' the incoming 
beam and emit nothing; we leave this possibility open. Often, though, 
b' will be a multiple beam, i.e. b '~ BI. Let b ' =  (bl',...,b,') be the out 
beam. We may think of the single beams b~', i = 1, . . . ,n,  as only being 
'part of the whole': correlations among the various single beams surely 
exist (imposed by various conservation laws, for example). One may 
further analyze one or several of these single-beams in the remote future 
(remote in the sense that measurements made on a beam immed!ately after 
its creation are part of the same experiment that created it). This analysis 
may infer some properties of the other single beams making up the com- 
plete out-state b'. An example of this situation is the celebrated Einstein- 
Rosen-Podolsky paradox (Einstein et aL, 1935; Bohm & Aharonov, 1957). 

When b ~ B i  n, one must distinguish two cases. If none of the constituents 
b~ of b enters R, the experiment eR" cannot detect such a beam; it therefore 
leaves the state untouched and registers nothing. On the other hand, it 
may happen that a subset of the constituent single beams enters R while 
the rest passes nearby. In this case, the output of eR" indeed consists of 
two beams: the one leaving the experiment and the remainder of the original 
beam. The numbers produced by the experiment eR ~ are the same set of 
numbers as would be produced by eR" applied only to the part of the beam 
entering R. By looking at a single state, which is a mixture, it is impossible 
to tell whether it is a true mixture (incoherent superposition) or an improper 
mixture (the restriction of a pure state of a bigger object) in the terminology 
of d'Espagnat (1965). In our language, one cannot tell whether a beam is 
an isolated single beam or 'part' or a multiple beam. Thus the numbers 
must be the same. 

Also, the two beams in the output may or may not be correlated. The 
correlations persist in the spontaneous decay of an unstable particle 
produced in the first experiment. They may be destroyed (the so-called 
'destruction of relative phases') as exemplified by a two-slit interference 
experiment (Feynman et al., 1963) or a Stern-Gerlach experiment (Gottfried, 
1966) where one analyzes one of the beams. One need not distinguish these 
cases as only an experiment which measures all o f  the single beams can 
detect the correlations (cf. d'Espagnat, 1965). 

We do not require the map b -+ b' to be linear. Linearity does not play 
any role in the present formalism, since it is totally uncommitted to any 
dynamical theory. Since Wigner (1963) has argued that measurement 
theory might be incompatible with linearity, we allow for this possibility. 

Of course, not all maps B -+ B (2) • (R +)  n will be experiments. It is part 
of a particular dynamical theory to tell which maps are in fact experiments 
and to predict the numerical values 77" 2 eRn(b) for a given experiment and 
beam. 

For n = 0, the above definition becomes simpler. A 0-channel experiment 
is one that yields an out-state but no data. Thus, it is a preparation. We 
note that AR" may be canonically embedded in AR ~ by merely omitting the 
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data. Precisely, ifeR" ~ An" we associate to it ea ~ EAR ~ by eR~ = rr~ eR"(b) 
for all b ~ B. 

On the set of experiments A we may define a natural composition. One 
can perform two experiments in succession, letting the out-state of the 
first be the in-state of the second. The usual notion of repeated experiments 
is not allowed, as no beam which leaves an experiment can ever enter it 
again. We need to distinguish the cases when the first experiment 'sees' 
the entire beam and when it 'sees' only part of it (i.e., its output is in B 
or B2). In the latter case, either (but not both) of the beams may enter the 
second experiment. By performing one experiment after another, we 
obviously receive two collections of numerical data. Modeling our choice 
on coincidence experiments, we feel that the output of the total operation 
is the output of  the second experiment, as long as the first experiment 
registered something (i.e. its numerical result was anything but 0). In 
this latter case, the entire operation should report the number 0. Formally, 
then, let eR" E A R  n and f s  m ~ As".  Then the composition o f  the two experi- 
ments, denoted by f s " O  eR n, is a map B - +  B (3) x (R+) m defined by the 
following relations [we will use the following notation: if f s  m o e~"(b) = 
(b',/3), then b' = p~(fs m o eR"(b)) and/3 = pz(fs" o eR"(b))]. 

(1) If  7rl eR"(b) ~ B, then 

Pl(fs"  o e,"(b) ) = ~lfsrn('rrl eR"(b) ) 

Pz(fs" 0 eg"(b)) = [(0, . . . ,  O) if zr z eg"(b) = (0, . . . ,  O) 
[rr2fsm(zq eg"(b) ) otherwise 

(2) I f  zqeg"(b)= (cl,c2)E B 2 -  B, then c I and c 2 cannot both be in 
Bisn. Let c2 q! Binn. Then 

Pl(fs" o eR"(b) ) = (Trxfsm(Cl), Ca) ~ B (3) 

pz(fs" o eg"(b) ) = [(0, . . . ,  0) if ~'2 eR"(b) ~- (0 . . . . .  O) 
[zrzfsm(cl) otherwise 

Obviously, the composition of two experiments is not an experiment. 
Also, we note that o is not commutative: f s  o e R # e R  o f s  in general. 
Lastly, we see that p2(eR o eR) - (0 , . . . ,  0). 

We may go further and define composed experiments by induction: 

A (2) = A o A 

A (n) = A o A (n-l)  

Note that A (") maps B into B ("+~). Letting 

"A = 6 ACn) 
n=l 

be the collection of  all multiple experiments, we see that composition is 
a map X x .4 -+ .~. Since A (") o A ~") c A(n+m), ,~ is a graded algebra. 
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3. Axioms 

The first two axioms deal with the single beams B 1 and have already 
been mentioned. It is the task of a dynamical theory to decide which sets 
C ~ ~ describe actual physical 'particles'. Further, for a realizable C E ~' 
only certain tubes Tand original surfaces S may be allowed by a given theory. 
We, however, assume that the following hold (which might possibly limit 
the choice of dynamics). 

Axiom 1 

For each T ~ J - ,  C ~ c~, and S e 5P, we have (T, C,0, S) ~ B1. 

Axiom 2 

For each T ~ 27-, C e cg, and S ~ 5 ~, i f  there is a ~ > 0 such that 
(T,C,~,S)  ~ B~, then (T,C,I~,S) e B~ for  all tz e [0, o~). 

This axiom means that if a certain state exists, then it can be made more 
or less intense. 

The second group of axioms deals with the relationship between experi- 
ments and beams. 

Axiom 3 
For each R E ~ and b ~ Bi~ n, there is some eR ~ AR such that zq eR(b) 

is not equivalent to b mode-, or that zr2eR(b) ~ (0,...,0). 

This axiom means that every beam is affected and/or detectable by some 
experiment in each region that it enters. 

Axiom 4 

For each R e ~ and b ~ B~ ut, there is some eRe AR and e ~ B i  n such that 
zq e~ (e) = b. 

This axiom means that every out-state is created by some experiment. 
By what has been assumed so far, we may have an empty theory. We 

therefore have the following existence axiom. 

Axiom 5 
For each T E ~ -  and S ~ S~, there is a C ~ ~ and A > O such that 

(T, C,2t, S) e B1. 

This means that given any tube, there is a physical state (other than the 
vacuum) propagating in its which was created on any specified space-like 
surface. We note that Axiom 3, together with Axiom 5, implies the existence 
of many non-trivial experiments. In physical terms, this axiom means that 
there exist universal beams capable of traveling in any prescribed way 
(at a speed not in excess of the speed of light). Such a requirement is inspired, 
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among others, by the use of electron beams and photon beams as quasi- 
universal probes, both at the atomic and nuclear level.t 

4. Causality Structure 

Instead of the ordering of points used in the usual discussion of causality, 
we here shall deal with an order relation between interaction regions. Given 
two disjoint elements of ~ ,  say R =(TR, SIR, S2 R) and S =  (TS, Sln, S2S), 
we say that (see Fig. 1)$ 

(1) R is earlier than S, written R < S, iffBeg(S) N V+(End(R)) r ;~. 
(2) R is later than S, written R > S, iff Beg(R) N V+(End(S)) % ;~. 
(3) R is space-like to S, written R ~,~ S, iff both Beg(S) N V+(End(R)) = 

and Beg(R) N V+(End(S)) = ~ .  

Figure 1--First  diagram: R < S. Second diagram: R t>,~ S. 

By construction, the three possibilities are mutually exclusive and ex- 
haustive. The relation '< '  is, however, not a partial order, for it need not 
be transitive. Due to the finite thickness of interaction regions, it is possible 
that R < S, S < U and R ~< U for regions R, S, U e ~ (see Fig. 2). The 

s 

Figure 2 

t See, for instance, Mott  & Massey (1965) and Hofstadter (1963). 
V+(A) = open forward light cone generated by A{ x 1(3y~A) (x-y)2  > 0, x ~ - y~ > 0} 

(we use the metric (+, - ,  - ,  -)) .  
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set ~ is, however, directed in both directions by '<'. That is, given any 
pair R~ and R 2 in ~ ,  there exists R3 ~ ~ earlier than both RI and R2, and 
there exists R 4 ff ~; later than both RI and R E. 

We now relate the order relation of interaction regions to the experi- 
ments. To do this, we introduce the concept of transparency. We say that 
the experiment fs ~ As is transparent to eR ~ AR iff for each b ~ B which 
satisfies rr 1 eR(b) ~ s we have 

fs o eR(b) = (zq eg(b), (0, . . . ,  0)) 

Less formally, suppose a beam b passed through the experiment eg tO 
produce the out-state b' v ~ s Thenfs  is transparent to eR if the out-beam 
f romfs  is still b' and no coincidences between eR andfs  were recorded. We 
note that for every e ~ A, e is transparent to e. The class As is transparent 
to the class AR iff fs is transparent to eR for each eR ~ AR, fs ~ As. (Recall 
that A R is the set of all experiments in the region R.) 

Proposition 4.1. 
Let R, S ~ ~ .  Then R < S iff As is not transparent to A R. In the latter 

case, we write A R < A s. 

Proof: Suppose R < S. Then there exists a world line W from the interior 
of End(R) to the interior of Beg(S). Taking a small convex neighborhood 
of  W, we see that there is a tube T such that T A End(R) < T N Beg(S), 
where '<'  refers to the Minkowski time ordering. By Axiom 5, there is a 
b z B such that b = ( T , C , ) t ,  S2R). Then b E B~Ut 0 Bis n by construction. 
By Axiom 4, there is an experiment eR ~ AR and a c z BiR n such that 
trieR(c) = b. Further, by Axiom 3, there is an experiment fs ~ As such 
that ~rlfs(b) is not equivalent to b rood ~ or ~r2fs(b) # (0,...,0). In either 
case, fs is not transparent to ea. 

Conversely, if As is not transparent to AR, then there is a beam c z B 
and experiments fs E As and eR ~ AR such that ~'l eR(c) = b # s and 
fs o eR(c) # (b,(O,...,0)). Hence, b E B~ ut N Bis n, and so Tb is a tube con- 
necting End(R) to Beg(S). Since T~ is composed of  geodesics, it is trivial 
that Beg(S) f) V+(End(R)) # Z.  Q.E.D. 

We note that the proof  above also showed that AR < As iff there exists 
a b ~ B, b # s and b ~ B~ ut [7 B in. 

Corollary 4.2 
Suppose R, S ~ ~ ,  Then R < S implies that AR is transparent to As. 

Proof: Since R < S, it is false that S < R. Now use Prop. 4.1. 

Corollary 4.3 
Suppose R, S ~ ~ .  Then R ~,,~ S iff AR is transparent to As and As is 

transparent to AR. In the latter case, we write AR t>,~ As. 
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Thus, we have a correspondence between the causality structure of 
and the transparency structure ofA. The next step is to relate these structures 
to the causality structure of "the underlying Minkowski space. To each 
point p ~ ~ '  we associate a family of regions R~ ") ~ ~ whose intersection 
is {p}, i.e. 

n R(. ") = {p) 
n 

One may obviously consider only families whose elements are ordered by 
inclusion, i.e. 

R(n) c R(p ") if n > m 
P 

By a family we shall mean a totally ordered family. For points p, q ~ J d  
we shall use the following notation: 

(1) p <Tq for (q __p)2 > 0 and q0 _pO > 0. 
(2) p <L q for (q -- p)2 = 0 and qO _ p0 > 0. 
(3) p >4 q for (q -p )2  < 0. 

We then have the following result. 

Proposition 4.4 
Suppose p and q are distinct points in Jg.  Then: 

(1) p <r  q iff for all families R(p "), S~ (") converging to p and q, re- 
spectively, R~ n) < S~ ") eventually. 

(2) p ~,,~ q iff for all families R(p n), S~ (") converging to p and q, re- 
spectively, R(") ~ .~(~) eventually. ~ L p  ~ q  

(3) p <L q iff there exist families R(p "), S~ (n),/~"), and _q.~(") converging 
to p, q, p, and q, respectively, such that R(")< .~") eventually 
and _~pR(") ~,~ o~ ") eventually. 

Proof: Let p < r  q and R(") and .~(") be families converging to p and q, ~ p  ~ q  

respectively. Since p <T q, q E V+(p) and so S(q ") c V+(p) eventually (recall 
that V+(p) is open). Let V-(n)=-W(Beg(S~(")))= open backward cone 
generated by Beg(Sq(")). Then p ~ V-(n) and so R(~")___ V-(n) eventually. 
Thus V+(End(R(p"))) fq V-(n) # ~ eventually which trivially implies R~ ") < 
Sq (0) (see Fig. 3a). 

Letp >4 q and R(p n) and S~ (") be families converging top and q, respectively. 
Then an argument similar to that above shows that V+(End(R(p "))) fq V-(n) = 
;~ eventually which means that R(,) N e(,) eventually (see Fig. 3b). 

Finally, let p <L q" Let 

R~") = xl Ix ~ - p ~  <-1 and I x - p [  < 
n 

and S(~ ") be the same with q replacing p. Let 

~(~) = xl lx o _pO[ < _  and I x - P l  < 
~ P  n 
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and ~") be the same with q replacing p. Then we have 

Rg ") < Sq (", and _g~"' ~ S~") 

eventually (see Fig. 3c and Fig. 3d). 

b. 

~Q 

/ 

Figure 3--The shaded area is the light-like part of V§ n V-(n). 

We have now established that a collection of five statements (include 
q < r P  and q <LP) which are mutually exclusive and exhaustive imply 
five statements which are mutually exclusive and exhaustive. Thus, we are 
done. Q.E.D. 

Combining the last few results, we get 

Proposition 4.5 
Let p and q be distinct points in dr'. Then: 

(1) p < r  q iff for all families R~ "), S~ ") converging to p and q, re- 
spectively, Aa(~) < As~g) eventually. 

(2) p ~,<~ q iff for all families R~ "~, S ,  ("~ converging to p and q, re- 
spectively, ARg,~ ~'<~ As~,~ eventually. 

(3) p <L q iff there exist families R~ "~, S~ "), ~,p~("), and _q.q(") converging 
to p, q, p and q, respectively, such that ARg"~ < Asc, ~ and 

Ang,) ~><~ As~.~ eventually. 
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5. Poincard Invariance 

Poincar6 transformations are defined as elements of the isometry group 
of ~g. In the usual formulations of measurement theory, they are realized 
in the Hilbert space of states as unitary or anti-unitary transformations. 
As we have no Hilbert space of states, we must define Poincar6 transfor- 
mations on our objects geometrically. We shall in the following consider 
only the time-preserving subgroup of the Poincar6 group, denoted by 
PL  (One can easily consider time-reversal with but minor changes in the 
following.) 

We let A 6 p t  be arbitrary. Then, by definition, p <r, I, q iff Ap <r, L Aq 
and p ~-~q iff Zip ~,,~ Aq. Hence, if T e J "  is a tube, then so is A T  and 
A -1T. Similar statements hold for space-like surfaces. Hence R e N iff 
A R  ~ ~ ,  Further, A preserves the relations '<'  and ' N '  on N. If  b ~ BI, 
then Ab is the beam in the transformed tube created on the transformed 
surface. A priori this need not be an element of By So we assume: 

Axiom 6 
I f b  = (T,C,)t,S) ~ B1, then Ab = (AT, C,;~,AS) ~ BI for any A ffP*. 

We extend this action to the beams by letting A act on the components, 
i.e. if b = (bi . . . . .  b,) ~ B, then Ab = (Abl . . . .  ,Ab,) and, from Axiom 6, 
Ab ~ B. The following results are rather trivial consequences. 

Proposition 5.1 
(1) AI2 = ~ for all A ~p t .  
(2) b i m bE iff Abl ~ Ab2 for bl, bz ~ B, A ~ P t. 
(3) I f b  ~ B satisfies Ab = b for all A ~ p t ,  then b = ~2. 
(4) Suppose b ~ By Then b leaves (enters) R iff Ab leaves (enters) 

A R  for R e ~ ,  A e p t .  
(5) A(B~") = B ~  for A eP~. 
(6) A(B~ ~t) no~t for A ~ p t .  

~ A R  

As to the experiments, the situation is more subtle. There are two types 
of invariance which must be carefully distinguished. One is the invariance 
of space-time under Pr (so-called homogeneity of space-time); this is 
already embodied by taking Mr' as the underlying space-time manifold. 
The other type of invariance under pT is that of a particular dynamical 
theory. Of course, experiments are designed to test those invariances. The 
important point is that they always test both, for no experiment can dis- 
tinguish between them. One must therefore postulate the invariance of 
space-time. Then, and only then, can experiments be used to test the 
invariance of a particular theory. A consequence of this fact is the equival- 
ence of the active and the passive interpretation of symmetries (Antoine, 
1969). Keeping this in mind, we may now define the transformation proper- 
ties of experiments. 
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Suppose eR ~ AR is a given piece of equipment located in R. Then AeR 
is uniquely defined to be the transformed (i.e. translated, rotated, boosted, 
etc.) apparatus. This is not the same thing as the original apparatus put 
in the region AR, for this may even be impossible. The postulate of the 
invariance of space-time under P~' would then imply that AeR is an experi- 
ment in A R  and that its out-beam is the transformed out-beam. Thus, we 
now assume: 

Axiom 7 
Suppose eR~ AR, b ~ B, and eR(b) = (b',fl). Then, for any A 6p t ,  

Ae R = (Ae)AR ~ AAR and further, Aeg(Ab) = (Ab',fl'). Also, AAR = AAR. 

We note that the numbers fl and/3'  may be different. The Poincar6 in- 
variance of the theory precisely means that these numbers are the same. 
We do not require that the dynamical theory be Poincar6 invariant. We 
observe from the above that the elements of Ag o are incapable of testing 
the invariance of a theory; one needs genuine measurements to do so. 

We note that the transparency relation behaves very simply under Pt .  
We saw (in the remark following Proposition 4.1) that AR < As was equiva- 
lent to the existence of a b ~ B, b # g2 such that b ~ B~ ut f] B in. Hence, 
Proposition 5.1, parts (5) and (6), and Axiom 7 above immediately yield: 

Proposition 5.2 
Let R, S e N and A ~ P t. Then AR < As, AAR < AAs, and AAR < AAs 

are equivalent. 

This is quite reassuring in the light of Proposition 4.5. In fact, if a trans- 
format ion/"  of ~ '  preserves the transparency relation then / "  almost is an 
element of P~. Following Zeeman (1964), we define G ~ to be the group 
generated by p t  and the dilations. 

Theorem 5.3 
L e t / ' : ~ '  -+ ~ '  satisfying 

(1) / ' i s  oneto one. 
(2) There is a 3 > 0 such that if R ~ ~ and diametert (R) < 8, then 

/ ' (R)  a n d / ' - I ( R )  are in ~ .  
(3) If  R,S  ~ ~ each have diameter less than 8, then AR < As iff 

AFtR) < Arcs). 

T he n / "  ~ G *. 

Proof: Let p and q be distinct points of,M'. Supposep < r  q. Let R~p) and 
S ~ )  be families converging to / ' (p )  and/ '(q), respectively. Then, eventually, 

t Supremum of the Euclidean distances between points of R. 
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-1 (n) T~-I C,(n) the diameters of these regions are smaller than 8. So,/~ Rr(p) and ~ or(q) 
are families converging to p and q, respectively. Thus 

A r-1R~p) < A T-1S?~) 

eventually and so 
A,~)c, , < As~.~,, 

eventually. Hence /~(p) <T _r'(q) by Proposition 4.1. Applying the argu- 
ment to _r '-1 we get thatp <r q i f f / ' (p)  <r  F(q). Similarly, one may show 
thatp <L q,P ~ q, q <TP, and q <LP hold if and only if the corresponding 
statement for 1-'(p) and/ ' (q)  holds. We may therefore appeal to Zeeman 
(1964) for the conclusion. Q.E.D. 

This result is an operational version of Zeeman's theorem. As in the 
original theorem, neither continuity nor linearity are assumed a priori. 
Also, it is remarkable that not all relations between arbitrary experiments 
need be preserved in order that a transformation P belong to G*; r '  need 
only preserve transparency relations, i.e. null results, between local experi- 
ments (3 may be arbitrarily small). 

6. Conclusion 

We should like to re-emphasize that the present formalism is completely 
independent of any dynamical theory. It is therefore compatible with 
quantized theories as well as classical ones, with linear theories as well 
as non-linear ones. It is, of course, true that orthodox quantum mechanics 
is linear. However, all interacting field equations are essentially non-linear. 
An energetic particle entering an experiment can produce a large number 
of particles and so one may question linearity as soon as pair production 
processes are present. In other words, it is possible that operational linear 
theories are valid approximations to reality only at low energy. Further- 
more, for completely different reasons, linearity might be incompatible 
with measurement theory itself, as argued by Wignes (1963). Thus we 
feel justified in leaving the door open to non-linear theories as well. 

Symbols 

5o 
j -  

Beg(R) 
End(R) 
cs 

BI 
~2 

Description 

Minkowski space 
all space-like surfaces 
all (world) tubes 
all interaction regions 
beginning of interaction region R 
end of interaction region R 
an unspecified collection of quantum numbers 
the single beams 
vacuum 



214 

Symbols 

B 
B k 

B(.) 

B~ at 

R+ 

q'gl 

q'g2 
A R  n 

AR 

A 

fs" o eR" 

Pl 
P2 
A(n) 

Z 

R < S  
R > S  
R N  S 
V+(A) 

A R < A s 

AR ~ As 

P < r q  
P <zq 
p N q  
pt  

G t 

Axioms 
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Description 

beams 
Cartesian product of B with itself k-times 

k=l  

all ingoing beams for region R 
all outgoing beams for region R 
an equivalence relation on the beams 
real numbers 
non-negative real numbers 
a projection operator 
a projection operator 
all n-channel experiments in R 
all experiments in R 
all experiments 
composition of two experiments 
a projection operator 
a projection operator 
n-composed experiments 
all multiple experiments 
the empty set 
region R is earlier than region S 
region R is later than region S 
region R is space-like to region S 
open forward light cone generated by A 

= {xl(3y ~ A) (x - y)2 > 0 and x ~ - y0 > 0} 
As is not transparent to AR 
AR is transparent to As and conversely 
(q_p)2 > 0 and q~ _pO > 0 
(q _p)2 = 0 and q~ -p~ > 0 
(q_p)2 < 0 
group of time preserving Poincar6 transformations 
group generated by p t  and the dilations 

1. (vr~Y-)  ( v c ~  ~ (vs  ~ ~ )  
(T, C,0,S) ~ B~ 

2. (Vr~ ~-) (VC ~ ~3 (VS~ ~ )  
(3~ > 0) (T, C,;~, S) ~ B, :~ (Vt,/> 0) (T, C, mS)  ~S~ 
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3. (VR ~ ~ )  (Vb E B~") (3ea ~ AR) 

rrl eR(b) r162 b or ~r2 eR(b) r162 (0 , . . . ,  O) 

4. (VR ~ ~ )  (Vb ~ B~ ut) (3eR ~ AR) (3c ~ B i  n) 

1rl e~(c) = b 

5. ( V T e  ~ (VS e 5P) (3C e cg) (3)t > 0) 

(T,C,A,S) eB~ 
6. (VA e P  t) (Vb = (T, C, ) t ,S )  e B,)  

A b  - (AT,  C, 1, A S )  ~ BI 

7. (a) (YeR e Aa) (Vb e B) (VA e P  t) 

eR(b) = (b', fl) ~ Aea  - (Ae)Aa ~ AAa and AeR(Ab) = (Ab',  fl') 

(b) (VR e N)  (VA e P r )  A A R  = A n a  

215 

Acknowledgements 

One of us (J.-P. Antoine) wishes to thank Professor R. H. Pratt for his hospitality at 
the University of Pittsburgh, Department of Physics. He also acknowledges receipt of 
a Fulbright-Hays Travel Award. A. Gleit thanks Professor L Kolodner for his hospitality 
at Carnegie-Mellon University, Department of Mathematics, and Professor W. Noll 
for his encouragement. 

References 

Antoine, J.-P. (1969). Dirac Formalism and Symmetry Problems in Quantum Mechanics: 
II. Symmetry Problems. Journal of Mathematical Physics, 10, 2276. 

Bohm, D. and Aharonov, Y. (1957). Discussion of Experimental Proof for the Paradox 
of Einstein, Rosen, and Podolsky. Physical Review, 108, 1070. 

Danefi, A., Loinger, A. and Prosperi, G. (1962). Quantum Theory of Measurement and 
Ergodicity Conditions. Nuclear Physics, 33, 297. 

Davies, E. and Lewis, J. (1970). An Operational Approach to Quantum Probability. 
Communications in Mathematical Physics, 17, 239. 

Davies, E. (1970). On the Repeated Measurement of Continuous Observables in 
Quantum Mechanics. Journal of Functional Analysis, 6, 318. 

Einstein, A., Podolsky, B. and Rosen, N. (1935). Can Quantum-Mechanical Description 
of Physical Reality be Considered Complete ? Physical Review, 47, 777. 

d'Espagnat, B. (1965). Conceptions de la Physique Contemporaine. Hermann, Paris, 
Feynman, R. P., Leighton, R. and Sands, W. (1963). The Feynman Lectures on Physics, 

Vol. III. Addison-Wesley, Reading, Mass. 
Gottfried, K. (1966). Quantum Mechanics, Ch. 4. Benjamin, New York. 
Haag, R. and Kastler, D. (1964). An Algebraic Approach to Quantum Field Theory. 

Journal of  Mathematical Physics, 5, 848. 
Hellwig, K.-E. and Kraus, K. (1970). Formal Description of Measurements in Local 

Quantum Field Theory. Phj~sical Review, D1, 566. 
Hofstadter, R. (1963). Electron Scattering and Nuclear Structure. Benjanfin, New York. 
Jasselette, P. (1970). About Quantum Measurements. Lettere al Nuovo Cimento, 3, 13. 
Jasselette, P. and Voisin, J. (1970). Sur le Probl~me de l'observation en m6canique 

quantique. Nuovo Cimento, 66B, 229. 
Jauch, J., Wigner, E. P. and Yanase, M. (1967). Some Comments Concerning Measure- 

ments in Quantum Mechanics. Nuovo Cimento, 4813, 144. 



216 J.-P. ANTOINE AND ALAN GLEIT 

Mott, N. and Massey, H. (1965). The Theory of  Atomic Collisions, 3rd ed. Clarendon 
Press, Oxford. 

Mielnik, B. (1968). Geometry of Quantum States. Communications in Mathematical 
Physics, 9, 55. 

Mielnik, B. (1969). Theory of Filters. Communications in MathematicalPhysics, 15, 1. 
von Neumann, J. (1955). Mathematical Foundations of  Quantum Mechanics. Princeton 

University Press. 
Schlieder, S. (1968). Einige Bemerkungen zur Zustands/inderung yon relativistischen 

quantenmechanischen Systemen .... Communications in Mathematical Physics, 7, 305. 
Wigner, E. P. (1963). The Problem of Measurement. American Journal o f  Physics, 31, 6. 
Zeeman, E. (1964). Causality Implies Lorentz Group. Journal of  MathematicalPhysics, 

5, 490. 


